V-Learning—A Simple, Efficient, Decentralized Algorithm for Multiagent Reinforcement Learning

Author:

Jin Chi1,Liu Qinghua1ORCID,Wang Yuanhao2ORCID,Yu Tiancheng3

Affiliation:

1. Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544;

2. Department of Computer Science, Princeton University, Princeton, New Jersey 08544;

3. Department of Electrical and Computer Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

A major challenge of multiagent reinforcement learning (MARL) is the curse of multiagents, where the size of the joint action space scales exponentially with the number of agents. This remains to be a bottleneck for designing efficient MARL algorithms, even in a basic scenario with finitely many states and actions. This paper resolves this challenge for the model of episodic Markov games. We design a new class of fully decentralized algorithms—V-learning, which provably learns Nash equilibria (in the two-player zero-sum setting), correlated equilibria, and coarse correlated equilibria (in the multiplayer general-sum setting) in a number of samples that only scales with [Formula: see text], where Ai is the number of actions for the ith player. This is in sharp contrast to the size of the joint action space, which is [Formula: see text]. V-learning (in its basic form) is a new class of single-agent reinforcement learning (RL) algorithms that convert any adversarial bandit algorithm with suitable regret guarantees into an RL algorithm. Similar to the classical Q-learning algorithm, it performs incremental updates to the value functions. Different from Q-learning, it only maintains the estimates of V-values instead of Q-values. This key difference allows V-learning to achieve the claimed guarantees in the MARL setting by simply letting all agents run V-learning independently. Funding: This work was partially supported by Office of Naval Research Grant N00014-22-1-2253.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3