Nonasymptotic Convergence Rates for the Plug-in Estimation of Risk Measures

Author:

Bartl Daniel1ORCID,Tangpi Ludovic2ORCID

Affiliation:

1. Department of Mathematics, Vienna University, 1010 Vienna, Austria;

2. Operations Research and Financial Engineering, Bendheim Center for Finance, Princeton University, Princeton, New Jersey 08544

Abstract

Let ρ be a general law-invariant convex risk measure, for instance, the average value at risk, and let X be a financial loss, that is, a real random variable. In practice, either the true distribution μ of X is unknown, or the numerical computation of [Formula: see text] is not possible. In both cases, either relying on historical data or using a Monte Carlo approach, one can resort to an independent and identically distributed sample of μ to approximate [Formula: see text] by the finite sample estimator [Formula: see text] (μN denotes the empirical measure of μ). In this article, we investigate convergence rates of [Formula: see text] to [Formula: see text]. We provide nonasymptotic convergence rates for both the deviation probability and the expectation of the estimation error. The sharpness of these convergence rates is analyzed. Our framework further allows for hedging, and the convergence rates we obtain depend on neither the dimension of the underlying assets nor the number of options available for trading. Funding: Daniel Bartl is grateful for financial support through the Vienna Science and Technology Fund [Grant MA16-021] and the Austrian Science Fund [Grants ESP-31 and P34743]. Ludovic Tangpi is supported by the National Science Foundation [Grant DMS-2005832] and CAREER award [Grant DMS-2143861].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3