An Optimal Streaming Algorithm for Submodular Maximization with a Cardinality Constraint

Author:

Alaluf Naor1,Ene Alina2ORCID,Feldman Moran3ORCID,Nguyen Huy L.4,Suh Andrew2

Affiliation:

1. Department of Mathematics and Computer Science, Open University of Israel, Raanana 4353701, Israel;

2. Department of Computer Science, Boston University, Boston, Massachusetts 02215;

3. Department of Computer Science, University of Haifa, Haifa 3498838, Israel;

4. Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115

Abstract

We study the problem of maximizing a nonmonotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi) streaming algorithm that uses roughly [Formula: see text] memory, where k is the size constraint. At the end of the stream, our algorithm postprocesses its data structure using any off-line algorithm for submodular maximization and obtains a solution whose approximation guarantee is [Formula: see text], where α is the approximation of the off-line algorithm. If we use an exact (exponential time) postprocessing algorithm, this leads to [Formula: see text] approximation (which is nearly optimal). If we postprocess with the state-of-the-art offline approximation algorithm, whose guarantee is [Formula: see text], we obtain a 0.2779-approximation in polynomial time, improving over the previously best polynomial-time approximation of 0.1715. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for nonmonotone submodular maximization, and enjoys a fast update time of [Formula: see text] per element.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constrained Submodular Maximization via New Bounds for DR-Submodular Functions;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. A Note on Maximizing Regularized Submodular Functions Under Streaming;Tsinghua Science and Technology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3