Pandora’s Box Problem with Order Constraints

Author:

Boodaghians Shant1ORCID,Fusco Federico2ORCID,Lazos Philip2ORCID,Leonardi Stefano2ORCID

Affiliation:

1. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

2. Department of Computer, Control and Management Engineering “Antonio Ruberti,” Sapienza University, Rome 00181, Italy

Abstract

The Pandora’s Box problem, originally posed by Weitzman in 1979, models selection from a set of random-valued alternatives—the “boxes”—when evaluation is costly. Weitzman showed that the Pandora’s Box problem admits a simple threshold-based solution that considers the options in decreasing order of reservation value, a proxy for the actual value of the boxes in the exploration process. We study for the first time this problem when the order in which the boxes are opened is constrained, forcing the solution to account for both the depth of search, as opening a box gives access to more boxes, and the breadth, as there are many directions to explore. Despite these difficulties, we show that greedy optimal strategies exist and can be efficiently computed for tree-like order constraints. We also prove that finding optimal adaptive search strategies is NP-hard to approximate (up to a certain constant) when certain matroid constraints are applied to further restrict the set of boxes that may be opened or when the order constraints are given as reachability constraints on a directed acyclic graph. We complement this hardness result by giving efficient approximation algorithms, exploiting a low adaptivity gap for a carefully relaxed version of the problem. Funding: This work was supported by the National Science Foundation [Grant 1750436] and the Ministero dell'Istruzione, dell'Università e della Ricerca [PRIN. ALGADIMAR “Algorithms, Games, and Digital]. This work was also supported by the ERC Advanced [Grant 788893] Algorithmic and Mechanism Design Research in Online Markets (AMDROMA).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3