Delay-Adaptive Learning in Generalized Linear Contextual Bandits

Author:

Blanchet Jose1,Xu Renyuan23ORCID,Zhou Zhengyuan4ORCID

Affiliation:

1. Department of Management Science and Engineering, Stanford University, Stanford, California 94305;

2. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089;

3. Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom;

4. Stern School of Business, New York University, New York, New York 10012

Abstract

In this paper, we consider online learning in generalized linear contextual bandits where rewards are not immediately observed. Instead, rewards are available to the decision maker only after some delay, which is unknown and stochastic. Such delayed feedback occurs in several active learning settings, including product recommendation, personalized medical treatment selection, bidding in first-price auctions, and bond trading in over-the-counter markets. We study the performance of two well-known algorithms adapted to this delayed setting: one based on upper confidence bounds and the other based on Thompson sampling. We describe modifications on how these two algorithms should be adapted to handle delays and give regret characterizations for both algorithms. To the best of our knowledge, our regret bounds provide the first theoretical characterizations in generalized linear contextual bandits with large delays. Our results contribute to the broad landscape of contextual bandits literature by establishing that both algorithms can be made to be robust to delays, thereby helping clarify and reaffirm the empirical success of these two algorithms, which are widely deployed in modern recommendation engines. Funding: This work was supported by the National Science Foundation [Grants 2118199, 1915967, and CCF-2106508], the Air Force Office of Scientific Research [Award FA9550-20-1-0397], a Digital Twin research grant from Bain & Company, and a faculty research grant from New York University’s Center for Global Economy and Business.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3