Affiliation:
1. Automatic Control and Systems Engineering Department, University Politehnica Bucharest, 060042 Bucharest, Romania;
2. Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 050711 Bucharest, Romania
Abstract
This paper deals with composite optimization problems having the objective function formed as the sum of two terms; one has a Lipschitz continuous gradient along random subspaces and may be nonconvex, and the second term is simple and differentiable but possibly nonconvex and nonseparable. Under these settings, we design a stochastic coordinate proximal gradient method that takes into account the nonseparable composite form of the objective function. This algorithm achieves scalability by constructing at each iteration a local approximation model of the whole nonseparable objective function along a random subspace with user-determined dimension. We outline efficient techniques for selecting the random subspace, yielding an implementation that has low cost per iteration, also achieving fast convergence rates. We present a probabilistic worst case complexity analysis for our stochastic coordinate proximal gradient method in convex and nonconvex settings; in particular, we prove high-probability bounds on the number of iterations before a given optimality is achieved. Extensive numerical results also confirm the efficiency of our algorithm. Funding: This work was supported by Norway Grants 2014-2021 [Grant ELO-Hyp 24/2020]; Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii [Grants PN-III-P4-PCE-2021-0720, L2O-MOC, nr 70/2022]; and the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement [Grant 861137].
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)