Large Deviations for the Single-Server Queue and the Reneging Paradox

Author:

Atar Rami1ORCID,Budhiraja Amarjit2ORCID,Dupuis Paul3,Wu Ruoyu4ORCID

Affiliation:

1. Viterbi Faculty of Electrical Engineering, Technion, Haifa 32000, Israel

2. Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

3. Division of Applied Mathematics, Brown University, Providence, Rhode Island 02906

4. Department of Mathematics, Iowa State University, Ames, Iowa 50011

Abstract

For the M/M/1+M model at the law-of-large-numbers scale, the long-run reneging count per unit time does not depend on the individual (i.e., per customer) reneging rate. This paradoxical statement has a simple proof. Less obvious is a large deviations analogue of this fact, stated as follows: the decay rate of the probability that the long-run reneging count per unit time is atypically large or atypically small does not depend on the individual reneging rate. In this paper, the sample path large deviations principle for the model is proved and the rate function is computed. Next, large time asymptotics for the reneging rate are studied for the case when the arrival rate exceeds the service rate. The key ingredient is a calculus of variations analysis of the variational problem associated with atypical reneging. A characterization of the aforementioned decay rate, given explicitly in terms of the arrival and service rate parameters of the model, is provided yielding a precise mathematical description of this paradoxical behavior.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3