Prophet Inequalities for Independent and Identically Distributed Random Variables from an Unknown Distribution

Author:

Correa José1ORCID,Dütting Paul2ORCID,Fischer Felix3ORCID,Schewior Kevin4ORCID

Affiliation:

1. Departamento de Ingeniería Industrial, Universidad de Chile, Santiago 8320000, Chile;

2. Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom;

3. School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;

4. Department Mathematik/Informatik, Universität zu Köln, Köln 50931, Germany

Abstract

A central object of study in optimal stopping theory is the single-choice prophet inequality for independent and identically distributed random variables: given a sequence of random variables [Formula: see text] drawn independently from the same distribution, the goal is to choose a stopping time τ such that for the maximum value of α and for all distributions, [Formula: see text]. What makes this problem challenging is that the decision whether [Formula: see text] may only depend on the values of the random variables [Formula: see text] and on the distribution F. For a long time, the best known bound for the problem had been [Formula: see text], but recently a tight bound of [Formula: see text] was obtained. The case where F is unknown, such that the decision whether [Formula: see text] may depend only on the values of the random variables [Formula: see text], is equally well motivated but has received much less attention. A straightforward guarantee for this case of [Formula: see text] can be derived from the well-known optimal solution to the secretary problem, where an arbitrary set of values arrive in random order and the goal is to maximize the probability of selecting the largest value. We show that this bound is in fact tight. We then investigate the case where the stopping time may additionally depend on a limited number of samples from F, and we show that, even with o(n) samples, [Formula: see text]. On the other hand, n samples allow for a significant improvement, whereas [Formula: see text] samples are equivalent to knowledge of the distribution: specifically, with n samples, [Formula: see text] and [Formula: see text], and with [Formula: see text] samples, [Formula: see text] for any [Formula: see text].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Ordinal Problems: Optimality of Comparison-based Algorithms and their Cardinal Complexity;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. Prophet Inequalities over Time;Proceedings of the 24th ACM Conference on Economics and Computation;2023-07-07

3. Sample-Driven Optimal Stopping: From the Secretary Problem to the i.i.d. Prophet Inequality;Mathematics of Operations Research;2023-04-17

4. Knapsack Secretary Through Boosting;Approximation and Online Algorithms;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3