Semidefinite Approximations for Bicliques and Bi-Independent Pairs

Author:

Laurent Monique12ORCID,Polak Sven12ORCID,Vargas Luis Felipe13ORCID

Affiliation:

1. Centrum Wiskunde & Informatica (CWI), 1098 XG Amsterdam, Netherlands;

2. Tilburg University, 5037 AB Tilburg, Netherlands;

3. Istituto Dalle Molle Studi sull’Intelligenza Artificiale (IDSIA), USI-SUPSI, CH-6962 Lugano-Viganello, Switzerland

Abstract

We investigate some graph parameters dealing with bi-independent pairs (A, B) in a bipartite graph [Formula: see text], that is, pairs (A, B) where [Formula: see text], and [Formula: see text] are independent. These parameters also allow us to study bicliques in general graphs. When maximizing the cardinality [Formula: see text], one finds the stability number [Formula: see text], well-known to be polynomial-time computable. When maximizing the product [Formula: see text], one finds the parameter g(G), shown to be NP-hard by Peeters in 2003, and when maximizing the ratio [Formula: see text], one finds h(G), introduced by Vallentin in 2020 for bounding product-free sets in finite groups. We show that h(G) is an NP-hard parameter and, as a crucial ingredient, that it is NP-complete to decide whether a bipartite graph G has a balanced maximum independent set. These hardness results motivate introducing semidefinite programming (SDP) bounds for g(G), h(G), and [Formula: see text] (the maximum cardinality of a balanced independent set). We show that these bounds can be seen as natural variations of the Lovász ϑ-number, a well-known semidefinite bound on [Formula: see text]. In addition, we formulate closed-form eigenvalue bounds, and we show relationships among them as well as with earlier spectral parameters by Hoffman and Haemers in 2001 and Vallentin in 2020. Funding: This work was supported by H2020 Marie Skłodowska-Curie Actions [Grant 813211 (POEMA)].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3