The Power of Subsampling in Submodular Maximization

Author:

Harshaw Christopher1ORCID,Kazemi Ehsan2ORCID,Feldman Moran3ORCID,Karbasi Amin4

Affiliation:

1. Department of Computer Science, Yale University, New Haven, Connecticut 06520;

2. Google, Zürich 8002, Switzerland;

3. Department of Computer Science, University of Haifa, Haifa 3498838, Israel;

4. Departments of Electrical Engineering, Computer Science, Statistics & Data Science, Yale University, New Haven, Connecticut 06520

Abstract

We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present SampleGreedy, which obtains a [Formula: see text]-approximation for maximizing a submodular function subject to a p-extendible system using [Formula: see text] evaluation and feasibility queries, where k is the size of the largest feasible set. The approximation ratio improves to p + 1 and p for monotone submodular and linear objectives, respectively. In the streaming setting, we present Sample-Streaming, which obtains a [Formula: see text]-approximation for maximizing a submodular function subject to a p-matchoid using O(k) memory and [Formula: see text] evaluation and feasibility queries per element, and m is the number of matroids defining the p-matchoid. The approximation ratio improves to 4p for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3