On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization

Author:

Garber Dan1ORCID,Kaplan Atara1

Affiliation:

1. Technion–Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Convex optimization over the spectrahedron, that is, the set of all real n × n positive semidefinite matrices with unit trace, has important applications in machine learning, signal processing, and statistics, mainly as a convex relaxation for optimization problems with low-rank matrices. It is also one of the most prominent examples in the theory of first order methods for convex optimization in which non-Euclidean methods can be significantly preferable to their Euclidean counterparts. In particular, the desirable choice is the matrix exponentiated gradient (MEG) method, which is based on the Bregman distance induced by the (negative) von Neumann entropy. Unfortunately, implementing MEG requires a full singular value decomposition (SVD) computation on each iteration, which is not scalable to high-dimensional problems. In this work, we propose efficient implementations of MEG, with both deterministic and stochastic gradients, which are tailored for optimization with low-rank matrices, and only use a single low-rank SVD computation on each iteration. We also provide efficiently computable certificates for the correct convergence of our methods. Mainly, we prove that, under a strict complementarity condition, the suggested methods converge from a warm-start initialization with similar rates to their full SVD–based counterparts. Finally, we bring empirical experiments that both support our theoretical findings and demonstrate the practical appeal of our methods.Funding: This work was supported by the Israel Science Foundation [Grant 1108/18].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3