Pure Nash Equilibria and Best-Response Dynamics in Random Games

Author:

Amiet Ben1ORCID,Collevecchio Andrea1ORCID,Scarsini Marco2ORCID,Zhong Ziwen1ORCID

Affiliation:

1. School of Mathematics, Monash University, Melbourne, Victoria 3800, Australia;

2. Department of Economics and Finance, Luiss, 00196 Rome, Italy

Abstract

In finite games, mixed Nash equilibria always exist, but pure equilibria may fail to exist. To assess the relevance of this nonexistence, we consider games where the payoffs are drawn at random. In particular, we focus on games where a large number of players can each choose one of two possible strategies and the payoffs are independent and identically distributed with the possibility of ties. We provide asymptotic results about the random number of pure Nash equilibria, such as fast growth and a central limit theorem, with bounds for the approximation error. Moreover, by using a new link between percolation models and game theory, we describe in detail the geometry of pure Nash equilibria and show that, when the probability of ties is small, a best-response dynamics reaches a pure Nash equilibrium with a probability that quickly approaches one as the number of players grows. We show that various phase transitions depend only on a single parameter of the model, that is, the probability of having ties.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Best-response dynamics in two-person random games with correlated payoffs;Games and Economic Behavior;2024-05

2. Conventions and social choice in large games;SSRN Electronic Journal;2024

3. Topological Bounds on the Price of Anarchy of Clustering Games on Networks;ACM Transactions on Economics and Computation;2023-12-19

4. Best-response dynamics, playing sequences, and convergence to equilibrium in random games;International Journal of Game Theory;2023-06-14

5. Random Perfect Information Games;Mathematics of Operations Research;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3