Affiliation:
1. School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
Abstract
There is growing interest in nonconvex minimax problems that is driven by an abundance of applications. Our focus is on nonsmooth, nonconvex-strongly concave minimax, thus departing from the more common weakly convex and smooth models assumed in the recent literature. We present proximal gradient schemes with either parallel or alternating steps. We show that both methods can be analyzed through a single scheme within a unified analysis that relies on expanding a general convergence mechanism used for analyzing nonconvex, nonsmooth optimization problems. In contrast to the current literature, which focuses on the complexity of obtaining nearly approximate stationary solutions, we prove subsequence convergence to a critical point of the primal objective and global convergence when the latter is semialgebraic. Furthermore, the complexity results we provide are with respect to approximate stationary solutions. Lastly, we expand the scope of problems that can be addressed by generalizing one of the steps with a Bregman proximal gradient update, and together with a few adjustments to the analysis, this allows us to extend the convergence and complexity results to this broader setting. Funding: The research of E. Cohen was partially supported by a doctoral fellowship from the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240]. The research of M. Teboulle was partially supported by the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240].
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献