Affiliation:
1. Graduate School of Business, Stanford University, Stanford, California 94305
Abstract
In multiperiod stochastic optimization problems, the future optimal decision is a random variable whose distribution depends on the parameters of the optimization problem. I analyze how the expected value of this random variable changes as a function of the dynamic optimization parameters in the context of Markov decision processes. I call this analysis stochastic comparative statics. I derive both comparative statics results and stochastic comparative statics results showing how the current and future optimal decisions change in response to changes in the single-period payoff function, the discount factor, the initial state of the system, and the transition probability function. I apply my results to various models from the economics and operations research literature, including investment theory, dynamic pricing models, controlled random walks, and comparisons of stationary distributions.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献