Robust Online Selection with Uncertain Offer Acceptance

Author:

Perez-Salazar Sebastian1ORCID,Singh Mohit2,Toriello Alejandro2ORCID

Affiliation:

1. Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, Texas 77005;

2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Online advertising has motivated interest in online selection problems. Displaying ads to the right users benefits both the platform (e.g., via pay-per-click) and the advertisers (by increasing their reach). In practice, not all users click on displayed ads, while the platform’s algorithm may miss the users most disposed to do so. This mismatch decreases the platform’s revenue and the advertiser’s chances to reach the right customers. With this motivation, we propose a secretary problem where a candidate may or may not accept an offer according to a known probability p. Because we do not know the top candidate willing to accept an offer, the goal is to maximize a robust objective defined as the minimum over integers k of the probability of choosing one of the top k candidates, given that one of these candidates will accept an offer. Using Markov decision process theory, we derive a linear program for this max-min objective whose solution encodes an optimal policy. The derivation may be of independent interest, as it is generalizable and can be used to obtain linear programs for many online selection models. We further relax this linear program into an infinite counterpart, which we use to provide bounds for the objective and closed-form policies. For [Formula: see text], an optimal policy is a simple threshold rule that observes the first [Formula: see text] fraction of candidates and subsequently makes offers to the best candidate observed so far. Funding: Financial support from the U.S. National Science Foundation [Grants CCF-2106444, CCF-1910423, and CMMI 1552479] is gratefully acknowledged.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3