A Localized Progressive Hedging Algorithm for Solving Nonmonotone Stochastic Variational Inequalities

Author:

Cui Xingbang1ORCID,Zhang Liping1ORCID

Affiliation:

1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Abstract

The progressive hedging algorithm (PHA) is an effective solution method for solving monotone stochastic variational inequalities (SVIs). However, this validity is based on the assumption of global maximal monotonicity. In this paper, we propose a localized PHA for solving nonmonotone SVIs and show that its validity is based on the weaker assumption of locally elicitable maximal monotonicity. Furthermore, we prove that such assumption holds when the mapping involved in the SVI is locally elicitable monotone or locally monotone. The local convergence of the proposed algorithm is established, and it is shown that the localized PHA has the rate of linear convergence under some mild assumptions. Some numerical experiments, including a two-stage orange market problem and randomly generated two-stage piecewise stochastic linear complementarity problems, indicate that the proposed algorithm is efficient. Funding: This work was supported by the National Natural Science Foundation of China [Grant 12171271].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3