Computing Approximate Equilibria in Weighted Congestion Games via Best-Responses

Author:

Giannakopoulos Yiannis1ORCID,Noarov Georgy2ORCID,Schulz Andreas S.1ORCID

Affiliation:

1. Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;

2. Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

We present a deterministic polynomial-time algorithm for computing [Formula: see text]-approximate (pure) Nash equilibria in (proportional sharing) weighted congestion games with polynomial cost functions of degree at most [Formula: see text]. This is an exponential improvement of the approximation factor with respect to the previously best deterministic algorithm. An appealing additional feature of the algorithm is that it only uses best-improvement steps in the actual game, as opposed to the previously best algorithms, that first had to transform the game itself. Our algorithm is an adaptation of the seminal algorithm by Caragiannis at al. [Caragiannis I, Fanelli A, Gravin N, Skopalik A (2011) Efficient computation of approximate pure Nash equilibria in congestion games. Ostrovsky R, ed. Proc. 52nd Annual Symp. Foundations Comput. Sci. (FOCS) (IEEE Computer Society, Los Alamitos, CA), 532–541; Caragiannis I, Fanelli A, Gravin N, Skopalik A (2015) Approximate pure Nash equilibria in weighted congestion games: Existence, efficient computation, and structure. ACM Trans. Econom. Comput. 3(1):2:1–2:32.], but we utilize an approximate potential function directly on the original game instead of an exact one on a modified game. A critical component of our analysis, which is of independent interest, is the derivation of a novel bound of [Formula: see text] for the price of anarchy (PoA) of [Formula: see text]-approximate equilibria in weighted congestion games, where [Formula: see text] is the Lambert-W function. More specifically, we show that this PoA is exactly equal to [Formula: see text], where [Formula: see text] is the unique positive solution of the equation [Formula: see text]. Our upper bound is derived via a smoothness-like argument, and thus holds even for mixed Nash and correlated equilibria, whereas our lower bound is simple enough to apply even to singleton congestion games.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3