A New Homotopy Proximal Variable-Metric Framework for Composite Convex Minimization

Author:

Tran-Dinh Quoc1ORCID,Liang Ling2,Toh Kim-Chuan2

Affiliation:

1. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;

2. Department of Mathematics and Institute of Operations Research and Analytics, National University of Singapore, Singapore 119076

Abstract

This paper suggests two novel ideas to develop new proximal variable-metric methods for solving a class of composite convex optimization problems. The first idea is to utilize a new parameterization strategy of the optimality condition to design a class of homotopy proximal variable-metric algorithms that can achieve linear convergence and finite global iteration-complexity bounds. We identify at least three subclasses of convex problems in which our approach can apply to achieve linear convergence rates. The second idea is a new primal-dual-primal framework for implementing proximal Newton methods that has attractive computational features for a subclass of nonsmooth composite convex minimization problems. We specialize the proposed algorithm to solve a covariance estimation problem in order to demonstrate its computational advantages. Numerical experiments on the four concrete applications are given to illustrate the theoretical and computational advances of the new methods compared with other state-of-the-art algorithms.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3