A Policy Gradient Algorithm for the Risk-Sensitive Exponential Cost MDP

Author:

Moharrami Mehrdad1ORCID,Murthy Yashaswini23ORCID,Roy Arghyadip4ORCID,Srikant R.23ORCID

Affiliation:

1. Computer Science Department, University of Iowa, Iowa City, Iowa 52242;

2. Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

3. Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

4. Mehta Family School of Data Science and Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Abstract

We study the risk-sensitive exponential cost Markov decision process (MDP) formulation and develop a trajectory-based gradient algorithm to find the stationary point of the cost associated with a set of parameterized policies. We derive a formula that can be used to compute the policy gradient from (state, action, cost) information collected from sample paths of the MDP for each fixed parameterized policy. Unlike the traditional average cost problem, standard stochastic approximation theory cannot be used to exploit this formula. To address the issue, we introduce a truncated and smooth version of the risk-sensitive cost and show that this new cost criterion can be used to approximate the risk-sensitive cost and its gradient uniformly under some mild assumptions. We then develop a trajectory-based gradient algorithm to minimize the smooth truncated estimation of the risk-sensitive cost and derive conditions under which a sequence of truncations can be used to solve the original, untruncated cost problem. Funding: This work was supported by the Office of Naval Research Global [Grant N0001419-1-2566], the Division of Computer and Network Systems [Grant 21-06801], the Army Research Office [Grant W911NF-19-1-0379], and the Division of Computing and Communication Foundations [Grants 17-04970 and 19-34986].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3