Congruency-Constrained TU Problems Beyond the Bimodular Case

Author:

Nägele Martin1ORCID,Santiago Richard2ORCID,Zenklusen Rico2ORCID

Affiliation:

1. University of Bonn, 53113 Bonn, Germany;

2. Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland

Abstract

A long-standing open question in integer programming is whether integer programs with constraint matrices with bounded subdeterminants are efficiently solvable. An important special case thereof are congruency-constrained integer programs [Formula: see text] with a totally unimodular constraint matrix T. Such problems are shown to be polynomial-time solvable for m = 2, which led to an efficient algorithm for integer programs with bimodular constraint matrices, that is, full-rank matrices whose n × n subdeterminants are bounded by two in absolute value. Whereas these advances heavily rely on existing results on well-known combinatorial problems with parity constraints, new approaches are needed beyond the bimodular case, that is, for m > 2. We make first progress in this direction through several new techniques. In particular, we show how to efficiently decide feasibility of congruency-constrained integer programs with a totally unimodular constraint matrix for m = 3 using a randomized algorithm. Furthermore, for general m, our techniques also allow for identifying flat directions of infeasible problems and deducing bounds on the proximity between solutions of the problem and its relaxation. Funding: This project received funding from the Swiss National Science Foundation [Grants 200021_184622 and P500PT_206742], the European Research Council under the European Union’s Horizon 2020 research and innovation program [Grant 817750], and the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy–GZ 2047/1 [Grant 390685813].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3