Bounds on the Optimal Radius When Covering a Set with Minimum Radius Identical Disks

Author:

Birgin Ernesto G.1ORCID,Gardenghi John L.2ORCID,Laurain Antoine3ORCID

Affiliation:

1. Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil;

2. Faculty UnB Gama, University of Brasília, Área Especial de Indústria Projeção A, Setor Leste, Gama, 72444-240 Brasília, DF, Brazil;

3. Faculty of Mathematics, University of Duisburg-Essen, 45127 Essen, Germany

Abstract

The problem of covering a two-dimensional bounded set with a fixed number of minimum-radius identical disks is studied in the present work. Bounds on the optimal radius are obtained for a certain class of nonsmooth domains, and an asymptotic expansion of the bounds as the number of disks goes to infinity is provided. The proof is based on the approximation of the set to be covered by hexagonal honeycombs and on the thinnest covering property of the regular hexagonal lattice arrangement in the whole plane. The dependence of the optimal radius on the number of disks is also investigated numerically using a shape-optimization approach, and theoretical and numerical convergence rates are compared. An initial point construction strategy is introduced, which, in the context of a multistart method, finds good-quality solutions to the problem under consideration. Extensive numerical experiments with a variety of polygonal regions and regular polygons illustrate the introduced approach. Funding: This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo [Grants 2013/07375-0, 2016/01860-1, 2018/24293-0, and 2019/25258-7] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 302682/2019-8, 303243/2021-0, 304258/2018-0, and 408175/2018-4].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3