Affiliation:
1. School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853
Abstract
We study the impact of nonconvexity on the complexity of nonsmooth optimization, emphasizing objectives such as piecewise linear functions, which may not be weakly convex. We focus on a dimension-independent analysis, slightly modifying a 2020 black-box algorithm of Zhang-Lin-Jegelka-Sra-Jadbabaie that approximates an ϵ-stationary point of any directionally differentiable Lipschitz objective using [Formula: see text] calls to a specialized subgradient oracle and a randomized line search. Seeking by contrast a deterministic method, we present a simple black-box version that achieves [Formula: see text] for any difference-of-convex objective and [Formula: see text] for the weakly convex case. Our complexity bound depends on a natural nonconvexity modulus that is related, intriguingly, to the negative part of directional second derivatives of the objective, understood in the distributional sense. Funding: This work was supported by the National Science Foundation [Grant DMS-2006990].
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献