Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

Author:

Nguyen Viet Anh1ORCID,Shafieezadeh-Abadeh Soroosh2ORCID,Kuhn Daniel3,Mohajerin Esfahani Peyman4

Affiliation:

1. Department of Management Science and Engineering, Stanford University, Stanford, California 94305;

2. Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

3. Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;

4. Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, Netherlands

Abstract

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, a pair of signal and noise distributions ranging over independent Wasserstein balls—with the goal to minimize and maximize the expected squared estimation error, respectively. We show that, if the Wasserstein balls are centered at normal distributions, then the zero-sum game admits a Nash equilibrium, by which the players’ optimal strategies are given by an affine estimator and a normal prior, respectively. We further prove that this Nash equilibrium can be computed by solving a tractable convex program. Finally, we develop a Frank–Wolfe algorithm that can solve this convex program orders of magnitude faster than state-of-the-art general-purpose solvers. We show that this algorithm enjoys a linear convergence rate and that its direction-finding subproblems can be solved in quasi-closed form.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3