Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions

Author:

Shao Hui1,Zhang Zhe George23ORCID

Affiliation:

1. International Business School, Zhejiang University, Haining 314400, China;

2. Department of Decision Sciences, Western Washington University, Bellingham, Washington 98225;

3. Beedie School of Business, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

Abstract

Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies. Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3