Exact Characterization of the Jointly Optimal Restocking and Auditing Policy in Inventory Systems with Record Inaccuracy

Author:

Chehrazi Naveed1ORCID

Affiliation:

1. Department of Supply Chain, Operations and Technology, Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130

Abstract

We present a continuous-time stochastic model of an inventory system with record inaccuracy. In this formulation, demand is modeled by a point process and is observable only when it leads to sales. In addition to demand that can reduce the stock, an unobservable stochastic loss process can also reduce the stock. The retailer’s goal is to identify the restocking and auditing policy that minimizes the expected discounted cost of carrying a product over an infinite horizon. We analytically characterize the optimal restocking and jointly optimal auditing policy. We prove that the optimal restocking policy is a threshold policy. Our proof of this result is based on a coupling argument that is valid for any demand and loss model. Unlike the optimal restocking policy, the jointly optimal auditing policy is not of threshold type. We show that a complete proof of this statement cannot be obtained by solely resorting to the first-order stochastic dominance property of the Bayesian shelf stock distribution induced by the demand and loss process. Instead, our characterization of the jointly optimal auditing policy is based on proving that the dynamics of the shelf stock distribution constitute a (strictly) sign-regular kernel. To our knowledge, this is the first paper that characterizes the optimal policy of a complex control problem by establishing sign regularity of its underlying Markovian dynamics. Our theoretical results lead to a fast algorithm for computing the exact jointly optimal auditing/restocking policy over the problem’s entire state space. This enables comparative statics analysis, which allows us to determine how inventory record inaccuracy affects the economic significance of various cost drivers. This, in turn, allows us to determine when or, better, under what conditions auditing can be an effective tool for reducing the total cost.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3