In vitro study of Biofilm Growth on Biologic Prosthetics

Author:

BELLOWS CHARLES,SMITH ALISON

Abstract

Biologic prosthetics are increasingly used for the repair of abdominal wall hernia defects but can become infected as a result of peri- or early post-operative bacterial contamination. Data evaluating biofilm formation on biologic prosthetics is lacking. The aim of this study was to investigate the influence of different biologic prosthetics on the growth behavior of two different bacterial species and their ability to form biofilms. Methicillin resistant Staphylococcus aureus (MRSA) or Pseudomrnonas aeruginosa were incubated on disks of two biologic prosthetics-human acellular dermis (ADM), and porcine small intestinal submucosa (SIS). The bacteria were allowed to attach to the prosthetics and propagate into mature biofilms for 24 hours at 370C. Images of biofilms were obtained using confocal microscopy and scanning electron microscopy (SEM). The number of viable cells and the biofilm biomass were quantified by colony forming units (CFUs) and crystal violet staining respectively. Analysis of variance was performed to compare the mean values for the different prosthetics. Each biologic matrix had a distinct surface characteristic. SEM visualized mature biofilms characterized by highly organized multi-cellular structures on surface of both biologic prosthetics. Quantification of bacterial growth over time showed that ADM had the lowest CFUs and biofilm biomass at 24 hours post-inoculation compared to SIS for both bacterial strains. MRSA and P. aeruginosa can form mature biofilms on biologic prosthetics but the relative abundance of the biofilm varies on different prosthetic constructs. Biologic material composition and manufacturing methods may influence bacterial adherence.

Publisher

Polish Society of Microbiologists

Subject

Microbiology (medical),Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3