Effects of Different Ambient Temperatures on Caecal Microbial Composition in Broilers

Author:

YANG YUTING,LI XING,CAO ZHENHUI,QIAO YINGING,LIN QIUYE,LIU JIANPING,ZHAO ZHIYONG,AN QINGCONG,ZHANG CHUNYONG,ZHANG HONGFU,PAN HONGBINORCID

Abstract

Short-term or acute temperature stress affect the immune responses and alters the gut microbiota of broilers, but the influences of long-term temperature stress on stress biomarkers and the intestinal microbiota remains largely unknown. Therefore, we examined the effect of three long-term ambient temperatures (high (HC), medium (MC), and low (LC) temperature groups) on the gene expression of broilers’ heat shock proteins (Hsps) and inflammation – related genes, as well as the caecal microbial composition. The results revealed that Hsp70 and Hsp90 levels in HC group significantly increased, and levels of Hsp70, Hsp90, IL-6, TNF-α, and NFKB1 in LC group were significantly higher than in MC group (p < 0.05). In comparison with the MC group, the proportion of Firmicutes increased in HC and LC groups, while that of Bacteroidetes decreased in LC group at phylum level (p < 0.05). At genus level, the proportion of Escherichia/Shigella, Phascolarctobacterium, Parabacteroides, and Enterococcus increased in HC group; the fraction of Faecalibacterium was higher in LC group; and the percentage of Barnesiella and Alistipes decreased in both HC and LC groups (p < 0.05). Functional analysis based on communities’ phylogenetic investigation revealed that the pathways involved in environmental information processing and metabolism were enriched in the HC group. Those involved in cellular processes and signaling, metabolism, and gene regulation were enriched in LC group. Hence, we conclude that the long-term temperature stress can greatly alter the intestinal microbial communities in broilers and may further affect the host’s immunity and health.

Publisher

Polish Society of Microbiologists

Subject

Microbiology (medical),Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3