Contribution of YPRO15C Overexpression to the Resistance of Saccharomyces cerevisiae BY4742 Strain to Furfural Inhibitor

Author:

Abrha Getachew Tafere12ORCID,Li Qian1,Kuang Xiaolin1,Xiao Difan1,Ayepa Ellen1,Wu Jinjian1,Chen Huan1,Zhang Zhengyue1,Liu Yina1,Yu Xiumei1,Xiang Quanju1,Ma Menggen13

Affiliation:

1. 1 Department of Applied Microbiology, College of Resources, Sichuan Agricultural University , Sichuan , China

2. 3 Department of Biotechnology, College of Dry Land Agriculture and Natural Resources, Mekelle University , Mekelle , Ethiopia

3. 2 Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University , Sichuan , China

Abstract

Abstract Lignocellulosic biomass is still considered a feasible source of bioethanol production. Saccharomyces cerevisiae can adapt to detoxify lignocellulose-derived inhibitors, including furfural. Tolerance of strain performance has been measured by the extent of the lag phase for cell proliferation following the furfural inhibitor challenge. The purpose of this work was to obtain a tolerant yeast strain against furfural through overexpression of YPR015C using the in vivo homologous recombination method. The physiological observation of the overexpressing yeast strain showed that it was more resistant to furfural than its parental strain. Fluorescence microscopy revealed improved enzyme reductase activity and accumulation of oxygen reactive species due to the harmful effects of furfural inhibitor in contrast to its parental strain. Comparative transcriptomic analysis revealed 79 genes potentially involved in amino acid biosynthesis, oxidative stress, cell wall response, heat shock protein, and mitochondrial-associated protein for the YPR015C overexpressing strain associated with stress responses to furfural at the late stage of lag phase growth. Both up- and down-regulated genes involved in diversified functional categories were accountable for tolerance in yeast to survive and adapt to the furfural stress in a time course study during the lag phase growth. This study enlarges our perceptions comprehensively about the physiological and molecular mechanisms implicated in the YPR015C overexpressing strain’s tolerance under furfural stress. Construction illustration of the recombinant plasmid. a) pUG6-TEF1p-YPR015C, b) integration diagram of the recombinant plasmid pUG6-TEF1p-YPR into the chromosomal DNA of Saccharomyces cerevisiae.

Publisher

Polish Society of Microbiologists

Subject

Microbiology (medical),Applied Microbiology and Biotechnology,General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3