Variations in the Adaptive Response of <i>Burkholderia pseudomallei</i> to Cold Stress

Author:

Zakharova I. B.1ORCID,Chirskov P. R.1ORCID,Ustinov D. V.1ORCID,Viktorov A. D.1ORCID,Shpak I. M.1ORCID,Toporkov А. V.1ORCID,Viktorov D. V.1ORCID

Affiliation:

1. Volgograd Research Anti-Plague Institute

Abstract

The aim of the study was to analyze differential gene expression in Burkholderia pseudomallei strains with different survival rates under cold stress conditions.Materials and methods. Three strains of B. pseudomallei (sequence types ST 46, ST 70, and ST 85) were used as model strains. The RNA was isolated using the membrane columns method and stabilized through dehydration. The cDNA was sequenced on the Illumina MiSeq platform. Gene functions were classified using the KEGG PATHWAY database.Results and discussion. Based on the analysis of transcriptomes of B. pseudomallei strains after prolonged exposure to cold stress, the molecular mechanisms of B. pseudomallei adaptation to low temperatures have been described for the first time ever. It was shown that adaptation of B. pseudomallei to cold stress is associated with regulatory processes leading to a significant decrease in the total transcriptional activity. Two strategies of adaptation to low temperatures have been found: 1) modulation of regulatory processes leading to suppression of gene expression of the main metabolic pathways to the minimum level that ensures cell viability and activation of the minimum required set of stress response genes, and 2) less noticeable suppression of general metabolism in combination with activation of expression of an extended range of genes for cold and heat shock, general, osmotic, and universal stresses. Both mechanisms provide the causative agent of melioidosis with survival under conditions of prolonged cold stress at low positive temperatures. The first strategy showed greater efficiency at negative temperatures. The transition of B. pseudomallei to a viable but uncultivated state occurs in the long term (at least 2 years). While with the second strategy, this happens within 2 months. Assessment of the potential and molecular mechanisms of adaptation of this bacterium to cold stress is necessary to understand the degree of risk in case of a possible introduction of B. pseudomallei into regions with a temperate climate and to develop effective measures to ensure the biosafety of the environment.

Publisher

Russian Research Anti-Plague Institute Microbe

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3