Dynamics of Antibody Response to <i>Yersinia pestis</i> Proteins in Plague Affected Guinea Pigs

Author:

Gapel’chenkova T. V.1ORCID,Shaikhutdinova R. Z.1ORCID,Trunyakova A. S.1ORCID,Svetoch T. E.1ORCID,Kombarova T. I.1ORCID,Platonov M. E.1ORCID,Borzilov A. I.1ORCID,Kopylov P. Kh.1ORCID,Dentovskaya S. V.1ORCID

Affiliation:

1. State Scientific Center of Applied Microbiology and Biotechnology

Abstract

Designing of new means for the specific prevention of plague, especially protein subunit vaccines, is impossible without studying the role of individual antigens in the manifestation of the pathogenic and immunogenic properties of Yersinia pestis. The aim of the present study was to determine the antibody levels to Y. pestis antigens in guinea pigs that survived infection with sub-lethal doses of virulent plague agent strains using enzyme immunoassay (ELISA). Materials and methods. Guinea pigs were inoculated subcutaneously with 30 CFU of the wild type Y. pestis subsp. Pestis strain 231 or non-capsular Y. pestis subsp. pestis Caf1-negative strain 358/12. Blood samples from sick or recovered guinea pigs were collected on day 15, 30, 60, and 90 after infection. The antibody response was assessed by 18 recombinant Y. pestis proteins in ELISA. Results and discussion. Heterogeneity of the antibody responses to the majority of the antigens with variation of IgG titers from animal to animal has been revealed. We observed increase in antibody titers by day 90 for the most analyzed antigens in the sera of the guinea pigs injected with wild type Y. pestis 231. On the contrary we found reduction in antibody titers by day 90 in case of inoculation with Y. pestis 358/12. The preservation of antibodies to Y. pestis proteins of different localization in the organism of the guinea pigs, as well functional activity, and the degree of representation on the surface of bacterial cell for a prolonged period of time indicates the multiplex nature of the plague immunity formation. Our findings are significant for the future design and development of effective vaccines against plague and the search for new targets for diagnostics of this disease.

Publisher

Russian Research Anti-Plague Institute Microbe

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3