Assessment of Seroprevalence to SARS-CoV-2 in Various Population Cohorts Using Logit Regression Models During Initial Period of Herd Immunity Formation

Author:

Mishchenko V. A.1ORCID,Pitersky M. V.2ORCID,Platonova Т. A.3ORCID,Smirnova S. S.4ORCID,Vyalykh I. V.2ORCID,Bykov I. P.2ORCID,Vyatkina L. G.2ORCID,Makhorina T. V.2ORCID,Orlov A. M.5ORCID,Popkova N. G.5ORCID,Semenov A. V.6ORCID

Affiliation:

1. Yekaterinburg Research Institute of Viral Infections of the SSC VB Vector; Instutute of Plant and Animal Ecology, Ural branch of RAS

2. Yekaterinburg Research Institute of Viral Infections of the SSC VB Vector

3. European Medical Center UMMC-Health

4. Yekaterinburg Research Institute of Viral Infections of the SSC VB Vector; Ural State Medical University of the Ministry of Health of Russia

5. Regional Blood Transfusion Station

6. Yekaterinburg Research Institute of Viral Infections of the SSC VB Vector; Ural Federal University named after the first President of Russia B.N. Yeltsin

Abstract

The aim of the study was to assess the dynamics of seroprevalence to SARS-CoV-2 in various population groups during the initial period of herd immunity formation based on multivariate analysis using logit regression models.Materials and methods. The study involved 1561 individuals divided into three population cohorts: people living with HIV/AIDS (PLHA), healthy blood donors, medical workers. The presence of antibodies to SARS-CoV-2 was determined in blood serum through ELISA using commercial reagent kits. Multivariate analysis of the dynamics of seroprevalence to SARS-CoV-2 was carried out using logistic regression models.Results and discussion. It has been revealed that probability of detecting IgG antibodies to SARS-CoV-2 significantly increased among the donors and medical workers in the spring-autumn 2020 series (p=0.005 и p<0.001, respectively), which corresponds to seroprevalence shift in the general population. Groups of donors and medical workers can be considered as indicator groups that characterize the herd immunity in reference to SARS-CoV-2, as well as the intensity of COVID-19 epidemic process. Seroprevalence to SARS-CoV-2 in PLHA group was at a consistently high level throughout the observation period. The generated logistic regression models made it possible to determine the trends in the development of the epidemic situation based on multifactorial analysis of the dynamics of seroprevalence to SARS-CoV-2.

Publisher

Russian Research Anti-Plague Institute Microbe

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology,Epidemiology

Reference14 articles.

1. Worldometer COVID-19. Coronavirus Pandemic. (Cited 01 Sept 2021). [Internet]. Available from: https://www.worldometers.info/coronavirus.

2. Official data on the coronavirus in Russia. The situation on COVID-19 in the regions. Sverdlovsk Region. (Cited 01 Sept 2021). [Internet]. Available from: https://стопкоронавирус.рф/information.

3. Erikstrup C., Hother C.E., Pedersen O.B.V., Mølbak K., Skov R.L., Holm D.K., Sækmose S.G., Nilsson A.C., Brooks P.T., Boldsen J.K., Mikkelsen C., Gybel-Brask M., Sørensen E., Dinh K.M., Mikkelsen S., Møller B.K., Haunstrup T., Harritshøj L., Jensen B.A., Hjalgrim H., Lillevang S.T., Ullum H. Estimation of SARS-CoV-2 infection fatality rate by real-time antibody screening of blood donors. Clin. Infect. Dis. 2021; 72(2):249–53. DOI: 10.1093/cid/ciaa849.

4. Smirnov V.S., Totolyan Areg A. [Some opportunities for immunotherapy in coronavirus infection]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2020; 10(3):446–58. DOI: 10.15789/2220-7619-SPO-1470.

5. Popova A.Yu., Andreeva E.E., Babura E.A., Balakhonov S.V., Bashketova N.S., Bulanov M.V., Valeullina N.N., Goryaev D.V., Detkovskaya N.N., Ezhlova E.B., Zaitseva N.N., Istorik O.A., Kovalchuk I.V., Kozlovskikh D.N., Kombarova S.V., Kurganova O.P., Kutyrev V.V., Lomovtsev A.E., Lukicheva L.A., Lyalina L.V., Melnikova A.A., Mikailova O.M., Noskov A.K., Noskova L.N., Oglezneva E.E., Osmolovskay T.P., Patyashina M.A., Penkovskaya N.A., Samoilova L.V., Smirnov V.S., Stepanova T.F., Trotsenko O.E., Totolyan A.A. [Features of developing SARS-CoV-2 nucleocapsid protein population-based seroprevalence during the first wave of the COVID-19 epidemic in the Russian Federation]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2021; 11(2):297–323. DOI: 10.15789/2220-7619-FOD-1684.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3