Intraspecific Differentiation of <i>Francisella tularensis</i> Strains Using Multilocus Real-Time Polymerase Chain Reaction

Author:

Osina N. A.1ORCID,Sitmbetov D. A.1ORCID,Bulgakova E. G.1ORCID,Chekmareva S. S.1ORCID,Sazanova E. V.1ORCID,Senichkina A. M.1ORCID,Lyashova O. Yu.1ORCID,Osin A. V.1ORCID,Shcherbakova S. A.1ORCID

Affiliation:

1. Russian Research Anti-Plague Institute “Microbe”

Abstract

The aim of the study was to develop a method for intraspecific differentiation of the tularemia microbe: subspecies tularensis (subpopulations AI and AII), holarctica (biovars japonica, EryS/R), mediasiatica, and novicida using multilocus real-time PCR. Materials and methods. We used 48 strains of F. tularensis of various subspecies, biovars, and subpopulations. Intraspecific appurtenance of the strains was carried out on the basis of the analysis of the RD-1 region variability applying PCR, the sdhA gene by Sanger fragment sequencing and by the disk diffusion method using disks with erythromycin. The selection of primers and probes was performed using the software available at www.genscript.com and GeneRunner 6.5.52. Sequence homology was assessed using the BLAST algorithm and the GenBank NCBI database. Results and discussion. New data on the structure and occurrence of the differentiation regions RD-8, RD-12, RD-28 of FTT1122c gene and its homologous sequences in strains of tularemia microbe of various subspecies have been obtained. Novel RDhm 346 bp in size, characteristic of strains of the subsp. mediasiatica, holarctica, which is deleted in subsp. tularensis and absent in subsp. novicida has been detected. Based on the detection of the FTT1670, FTT1122с, FTT1067, FTW_2084 loci, a multilocus real-time PCR has been developed – “F. tularensis 4c”, providing for identification of all subspecies of the tularemia microbe, separately for the biovar japonica of the Holarctic subspecies and subpopulations AI, AII of the subspecies tularensis. The PCR specificity was confirmed in the study of strains of tularemia microbe from the fund of the “State Collection of Pathogenic Bacteria” at the premises of the Russian Reserarch Anti-Plague Institute “Microbe”. The results obtained expand the concept of intraspecific genetic heterogeneity of tularemia microbe and possibilities of identifying the causative agent of tularemia using molecular-genetic methods. They are important for understanding the processes of adaptation of the pathogen to circulation in the host organism and environmental objects, the course of evolution and formation of new species of Francisella.

Publisher

Russian Research Anti-Plague Institute Microbe

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3