Affiliation:
1. ORDU ÜNİVERSİTESİ
2. CUMHURIYET UNIVERSITY, FACULTY OF SCIENCE
Abstract
Let f be any modulus function. We prove that the classes of strongly deferred Cesàro convergent sequences defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred uniformly integrable. Some converse inclusions are obtained when the modulus function f is compatible. Finally, for any compatible modulus f, we prove that any sequence is f-strongly deferred Cesàro convergent if and ony if it is deferred f-statistically convergent and deferred uniformly integrable.
Reference22 articles.
1. [1] Fast H., Sur la convergence statistique. Colloq. Math., 2 (3/4) (1951) 241–244.
[2] Buck R. C., Generalized asymptotic density, Amer. J. Math., 75 (1953) 335–346.
2. [3] Schoenberg I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959) 361–375.
3. [4] Šalát T., On statistically convergent sequences of real numbers. Math. Slovaca, 30(2) (1980) 139-150.
4. [5] Fridy J. A., On statistical convergence, Analysis, 5 (1985) 301–313.
5. [6] Maddox I.J., Sequence spaces defined by a modulus, Math. Proc., Cambridge Philos. Soc., 100 (1986) 161-166.