Affiliation:
1. TC MİLLİ EĞİTİM BAKANLIĞI
2. SİVAS CUMHURİYET ÜNİVERSİTESİ
Abstract
In this paper, we consider a diffusion operator which includes conformable fractional derivatives of order α (0<α≤1) instead of the ordinary derivatives in a traditional diffusion operator. We give an α-integral representation for the solution of this operator and obtain the conditions provided by the kernel functions in this representation. Also, by investigating the basic properties of this operator, we obtain the asymptotics of the data {λ_n,α_n }, which are called the spectral data of the operator.
Reference21 articles.
1. [1] Khalil R., Al Horania M., Yousefa A., et al., A New Definition of Fractional Derivative, J. Comput. Appl. Math., 264 (2014) 65-70.
2. [2] Abdeljawad T., On Conformable Fractional Calculus, J. Comput. Appl. Math., 279 (2015) 57-66.
3. [3] Atangana A., Baleanu D., Alsaedi A., New Properties of Conformable Derivative, Open Math., 13 (2015) 889-898.
4. [4] Abu Hammad M., Khalil R., Abel’s Formula and Wronskian for Conformable Fractional Differential Equations, Int. J. Differ. Equ. Appl., 13 (3) (2014) 177-183.
5. [5] Birgani O.T., Chandok S., Dedovic N., Radenoviç S., A Note on Some Recent Results of the Conformable Derivative, Adv. Theory Nonlinear Anal. Appl., 3 (1) (2019) 11-17.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献