How to Analyze the Association between Two Categorical Variables Based on Census Data with a High Level of Nonresponse

Author:

Terek Milan,Muchová Eva,Leško Peter

Abstract

Statistical surveys are often used in shaping managerial policy and practice. In this paper we study, how to analyze the association between two categorical variables based on census data with a high level of nonresponse. The purpose is to discuss the suggested approach to the investigation. We used the census data from the survey executed at one Slovak University for testing the new process. The proposed process offers the methods of analysis of the association between two categorical variables based on pseudo-population estimated from the census data with a high level of nonresponse. We recommend using the process in the surveys in which the costs of survey execution by the census are practically not different from sample survey costs, and the connections to all units of the population are available.

Publisher

Editura Universitatii Alexandru Ioan Cuza din Iasi

Subject

General Economics, Econometrics and Finance,General Business, Management and Accounting

Reference24 articles.

1. Agresti, A. (2010). Analysis of Ordinal Categorical Data (2nd ed. ed.): John Wiley & Sons. http://dx.doi.org/10.1002/9780470594001

2. Agresti, A. (2013). Categorical Data Analysis (3rd ed. ed.): Wiley and Sons.

3. Agresti, A. (2018). Statistical Methods for the Social Sciences (5th ed. ed.): Pearson.

4. Agresti, A., & Finlay, B. (2014). Statistical Methods for the Social Sciences (4th ed. ed.): Pearson.

5. Chaudhuri, A. (2014). Modern Survey Sampling. New York: Chapman and Hall. http://dx.doi.org/10.1201/b17087

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3