Abstract
AbstractCharacterising context-dependent gene functions is crucial for understanding the genetic bases of health and disease. To date, inference of gene functions from large-scale genetic perturbation screens is based on ad-hoc analysis pipelines involving unsupervised clustering and functional enrichment. We present Knowledge-Driven Machine Learning (KDML), a framework that systematically predicts multiple functions for a given gene based on the similarity of its perturbation phenotype to those with known function. As proof of concept, we test KDML on three datasets describing phenotypes at the molecular, cellular and population levels, and show that it outperforms traditional analysis pipelines. In particular, KDML identified an abnormal multicellular organisation phenotype associated with the depletion of olfactory receptors and TGFβ and WNT signalling genes in colorectal cancer cells. We validate these predictions in colorectal cancer patients and show that olfactory receptors expression is predictive of worse patient outcome. These results highlight KDML as a systematic framework for discovering novel scale-crossing and clinically relevant gene functions. KDML is highly generalizable and applicable to various large-scale genetic perturbation screens.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献