Large-scale simulation of biomembranes: bringing realistic kinetics to coarse-grained models

Author:

Sadeghi MohsenORCID,Noé FrankORCID

Abstract

Biomembranes are two-dimensional assemblies of phospholipids that are only a few nanometres thick, but form micrometer-sized structures vital to cellular function. Explicit modelling of biologically relevant membrane systems is computationally expensive, especially when the large number of solvent particles and slow membrane kinetics are taken into account. While highly coarse-grained solvent-free models are available to study equilibrium behaviour of membranes, their efficiency comes at the cost of sacrificing realistic kinetics, and thereby the ability to predict pathways and mechanisms of membrane processes. Here, we present a framework for integrating coarse-grained membrane models with anisotropic stochastic dynamics and continuum-based hydrodynamics, allowing us to simulate large biomembrane systems with realistic kinetics at low computational cost. This paves the way for whole-cell simulations that still include nanometer/nanosecond spatiotemporal resolutions. As a demonstration, we obtain and verify fluctuation spectrum of a full-sized human red blood cell in a 150-milliseconds-long single trajectory. We show how the kinetic effects of different cytoplasmic viscosities can be studied with such a simulation, with predictions that agree with single-cell experimental observations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3