Modeling the Switching behavior of Functional Connectivity Microstates (FCμstates) as a Novel Biomarker for Mild Cognitive Impairment

Author:

Dimitriadis SIORCID,López María Eugenia,Maestu Fernando,Pereda Ernesto

Abstract

AbstractIt is evident the need for designing and validating novel biomarkers for the detection of mild cognitive impairment (MCI). MCI patients have a high risk of developing Alzheimer’s disease (AD), and for that reason the introduction of novel and reliable biomarkers is of significant clinical importance. Motivated by recent findings about the rich information of dynamic functional connectivity graphs (DFCGs) about brain (dys)function, we introduced a novel approach of identifying MCI based on magnetoencephalographic (MEG) resting state recordings.The activity of different brain rhythms {δ, θ, α1, α2, β1, β2, γ1, γ2} was first beamformed with linear constrained minimum norm variance in the MEG data to determine ninety anatomical regions of interest (ROIs). A dynamic functional connectivity graph (DFCG) was then estimated using the imaginary part of phase lag value (iPLV) for both intra-frequency coupling (8) and also cross-frequency coupling pairs (28). We analyzed DFCG profiles of neuromagnetic resting state recordings of 18 Mild Cognitive Impairment (MCI) patients and 20 healthy controls. We followed our model of identifying the dominant intrinsic coupling mode (DICM) across MEG sources and temporal segments that further leads to the construction of an integrated DFCG (iDFCG). We then filtered statistically and topologically every snapshot of the iDFCG with data-driven approaches. Estimation of the normalized Laplacian transformation for every temporal segment of the iDFCG and the related eigenvalues created a 2D map based on the network metric time series of the eigenvalues (NMTSeigs). NMTSeigs preserves the non-stationarity of the fluctuated synchronizability of iDCFG for each subject. Employing the initial set of 20 healthy elders and 20 MCI patients, as training set, we built an overcomplete dictionary set of network microstates (nμstates). Afterward, we tested the whole procedure in an extra blind set of 20 subjects for external validation.We succeeded a high classification accuracy on the blind dataset (85 %) which further supports the proposed Markovian modeling of the evolution of brain states. The adaptation of appropriate neuroinformatic tools that combine advanced signal processing and network neuroscience tools could manipulate properly the non-stationarity of time-resolved FC patterns revealing a robust biomarker for MCI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3