Local adaptation and hybrid failure share a common genetic basis

Author:

Walter Greg M.ORCID,Aguirre J. David,Wilkinson Melanie J,Richards Thomas J.,Blows Mark W.,Ortiz-Barrientos Daniel

Abstract

AbstractTesting whether local adaptation and intrinsic reproductive isolation share a genetic basis can reveal important connections between adaptation and speciation. Local adaptation arises as advantageous alleles spread through a population, but whether these same advantageous alleles fail on the genetic backgrounds of other populations remains largely unknown. We used a quantitative genetic breeding design to produce a late generation (F4) recombinant hybrid population by equally mating amongst four contrasting ecotypes of a native Australian daisy for four generations. We tracked fitness across generations and measured morphological traits in the glasshouse, and used a reciprocal transplant to quantify fitness in all four parental habitats. In the glasshouse, plants in the second generation showed a reduction in fitness as a loss of fertility, but this was fully recovered in the following generation. The F4 hybrid lacked extreme phenotypes present in the parental ecotypes, suggesting that genes reducing hybrid fitness were linked to traits specific to each ecotype. In the natural habitats, additive genetic variance for fitness was greatest for habitats that showed stronger native-ecotype advantage, suggesting that a loss of genetic variation present in the parental ecotypes were adaptive in the natural habitats. Reductions in genetic variance for fitness were associated with a loss of ecological trade-offs previously described in the parental ecotypes. Furthermore, natural selection on morphological traits differed amongst the parental habitats, but was not predicted to occur towards the morphology of the parental ecotypes. Together, these results suggest that intrinsic reproductive isolation removed adaptive genetic variation present in the parental ecotypes. The evolution of these distinct ecotypes was likely governed by genetic variation that resulted in both ecological trade-offs and intrinsic reproductive isolation among populations adapted to contrasting environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3