Abstract
AbstractAllopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neo-allopolyploids to form and adapt. Nevertheless, how neo-allopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small non-coding RNAs (sRNAs) in mediating the transcriptional response of neo-allopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate post-transcriptional gene silencing (PTGS) by mRNA cleavage whereas 24-nt sRNAs repress transcription (transcriptional gene silencing, TGS) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized B. napus allotetraploids surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target non-coding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a PTGS-to-TGS shift at the first stages of the neo-allopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various non-coding elements and stress-related genes, thus ensuring genome stability during the first steps of neo-allopolyploid formation.
Publisher
Cold Spring Harbor Laboratory