functionInk: An efficient method to detect functional groups in multidimensional networks reveals the hidden structure of ecological communities

Author:

Pascual-García AlbertoORCID,Bell Thomas

Abstract

AbstractComplex networks have been useful to link experimental data with mechanistic models, and have become widely used across many scientific disciplines. Recently, the increasing amount and complexity of data, particularly in biology, has prompted the development of multidimensional networks, where dimensions reflect the multiple qualitative properties of nodes, links, or both. As a consequence, traditional quantities computed in single dimensional networks should be adapted to incorporate this new information. A particularly important problem is the detection of communities, namely sets of nodes sharing certain properties, which reduces the complexity of the networks, hence facilitating its interpretation.In this work, we propose an operative definition of “function” for the nodes in multidimensional networks, and we exploit this definition to show that it is possible to detect two types of communities: i) modules, which are communities more densely connected within their members than with nodes belonging to other communities, and ii) guilds, which are sets of nodes connected with the same neighbours, even if they are not connected themselves. We provide two quantities to optimally detect both types of communities, whose relative values reflect their importance in the network.The flexibility of the method allowed us to analyze different ecological examples encompassing mutualistic, trophic and microbial networks. We showed that by considering both metrics we were able to obtain deeper ecological insights about how these different ecological communities were structured. The method mapped pools of species with properties that were known in advance, such as plants and pollinators. Other types of communities found, when contrasted with external data, turned out to be ecologically meaningful, allowing us to identify species with important functional roles or the influence of environmental variables. Furthermore, we found the method was sensitive to community-level topological properties like the nestedness.In ecology there is often a need to identify groupings including trophic levels, guilds, functional groups, or ecotypes.The method is therefore important in providing an objective means of distinguishing modules and guilds. The method we developed, functionInk (functional linkage), is computationally efficient at handling large multidimensional networks since it does not require optimization procedures or tests of robustness. The method is available at: HTTPS://GITHUB.COM/APASCUALGARCIA/FUNCTIONINK.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. J. E. Cohen and D. W. Stephens , Food webs and niche space. No. 11, Princeton University Press, 1978.

2. Fluctuations of Animal Populations and a Measure of Community Stability

3. Multilayer networks

4. Community detection in graphs

5. Food web models: a plea for groups

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3