Abstract
ABSTRACTMetabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+) and 67 negative estrogen receptor (ER-), to test the accuracies of autoencoder, a deep learning (DL) framework, as well as six widely used machine learning models, namely Random Forest (RF), Support Vector Machines (SVM), Recursive Partitioning and Regression Trees (RPART), Linear Discriminant Analysis (LDA), Prediction Analysis for Microarrays (PAM), and Generalized Boosted Models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER-patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value<0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion & absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accurcy (AUC=0.93) and better revelation of disease biology. We encourage the adoption of autoencoder based deep learning method in the metabolomics research community for classification.
Publisher
Cold Spring Harbor Laboratory
Reference62 articles.
1. Organization, W. H. Breast cancer: prevention and control. http://www.who.int/cancer/detection/breastcancer/en/index1.html (October 10, 2017)
2. Society, A. C. About Breast Cancer. https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html (September 21, 2017)
3. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study;JAMA,2006
4. Intrinsic Breast Tumor Subtypes, Race, and Long-Term Survival in the Carolina Breast Cancer Study
5. Impact of Breast Cancer Subtypes and Treatment on Survival: An Analysis Spanning Two Decades
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献