The PPR-related splicing cofactor MSP1/EMB1025 protein, encoded by At4g20090, encode an essential protein that is required for the splicing of nad1 intron 1 and for the biogenesis of complex I in Arabidopsis mitochondria

Author:

Best Corinne,Zmudjak Michal,Ostersetzer-Biran OrenORCID

Abstract

AbstractGroup II introns are particularly plentiful within plant mitochondrial genomes (mtDNAs), where they interrupt the coding-regions of many organellar genes, especialy within complex I (CI) subunits. Their splicing is essential for the biogenesis of the respiratory system and is facilitated by various protein-cofactors that belong to a diverse set of RNA-binding cofactors. These including maturases, which co-evolved with their host-introns, and various trans-acting factors, such as members of the pentatricopeptide-repeat (PPR) protein family. The genomes of angiosperms contain hundreds of PPR-related genes that are postulated to reside within the organelles and affect diverse posttranscriptional steps, such as editing, RNA-stability and processing or translation. Here, we report the characterization of MSP1 (Mitochondria Splicing PPR-factor 1; also denoted as EMB1025), which plays a key role in the processing of nad1 pre-RNAs in Arabidopsis mitochondria. Mutations in MSP1 gene-locus (At4g20090) result in early embryonic arrest. To analyze the putative roles of MSP1 in organellar RNA-metabolism we used a modified embryo-rescue method, which allowed us to obtain sufficient plant tissue for the analysis of the RNA and protein profiles associated with msp1 mutants. Our data indicate that MSP1 is essential for the trans-splicing of nad1 intron 1 in Arabidopsis mitochondria. Accordingly, msp1 mutants show CI biogenesis defects and reduced respiratory-mediated functions. These results provide with important insights into the roles of nuclear-encoded factors during early plant development, and contribute to our limited understanding of the importance of RNA-maturation and splicing in plant mitochondria during early embryogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3