FleN contributes to heterogeneous swimming at high temperatures inPseudomonas syringae

Author:

Hockett Kevin L.ORCID,Lindow Steven E.

Abstract

SUMMARYMotility is generally conserved among many animal and plant pathogens. Environmental conditions, however, significantly impact expression of the motile phenotype. In this study, we describe a novel heterogeneous motility phenotype inPseudomonas syringae, where under normally suppressive incubation conditions (30°C) punctate colonies arise that are spatially isolated from the point of inoculation, giving rise to a motility pattern we term constellation swimming (CS). We demonstrate that this phenotype is reproducible, reversible, and dependent on a functioning flagellum. Mirroring the heterogeneous motility phenotype, we demonstrate the existence of a sub-population of cells under non-permissive conditions that express flagellin (fliC) at levels similar to cells incubated under permissive conditions using both quantitative single cell microscopy and flow cytometry. To understand the genetics underlying the CS phenotype, we selected for naturally arising mutants that exhibited a normal swimming phenotype at the warmer incubation temperature. Sequencing these mutants recovered several independent non-synonymous mutations within FleN (also known as FlhG) as well as mutations within the promoter region of FleQ, the master flagellum regulator inPseudomonas. We further show that nutrient depletion is the likely underlying cause of CS, as reduced nutrients will stimulate bothfliCexpression and a normal swimming phenotype at 30 °C.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3