2-APB arrests human keratinocyte proliferation and inhibits cutaneous squamous cell carcinomain vitro

Author:

Nelson Aislyn M.,Moayedi YaldaORCID,Greenberg Sophie A.,Ruiz Marlon E.,Jensen Uffe B.,Owens David M.,Lumpkin Ellen A.ORCID

Abstract

AbstractBackgroundThe epidermis is a stratified epithelium whose differentiation program is triggered in part by calcium. Dysregulation of keratinocyte differentiation may lead to non-melanoma skin cancers, including cutaneous squamous cell carcinoma (cSCC). The compound 2-aminoethoxydiphenyl borate (2-APB) modulates calcium signaling by altering activity of calcium-permeable channels of the transient receptor potential (TRP) and ORAI families, and is therefore poised to govern signaling pathways that control the balance of keratinocyte proliferation and differentiation.ObjectiveWe sought to determine whether 2-APB alters differentiation of normal human keratinocytes and progression of human cSCCs modelsin vitro.MethodsPrimary human keratinocyte cultures were treated with 2-APB and levels of proliferation (EdU incorporation) and differentiation markers [quantitative PCR (qPCR)] were assessed. Human cSCC biopsies and cell lines were analyzed for TRP and ORAI gene expression via qPCR. cSCC cell lines were cultured in organtypic cultures and analyzed for growth and invasiveness after 2-APB or vehicle treatment.ResultsCulturing human keratinocytes with 2-APB arrested cell proliferation, triggered differentiation-gene expression and altered epidermal stratification, indicating that 2-APB application is sufficient to promote differentiation. In human organotypic cSCC cultures, 2-APB attenuated tumor growth and invasiveness. Finally, expression of a panel of 2-APB-targeted ion channels (TRPV3, TRPV1, TRPC1, OraI1, OraI2 and OraI3) was dysregulated in high-risk cSCC biopsies.ConclusionsCollectively, these findings identify 2-APB as a potential therapeutic for high-risk cSCCs.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3