Multiple interfacial hydration of dihydro-sphingomyelin bilayer reported by the Laurdan fluorescence

Author:

Watanabe (N. W.) N.,Goto (Y. G) Y.,Suga (K. S.) K.ORCID,Nyholm (T. N.) T.,Slotte (J. P. S.) J. P.,Umakoshi (H. U.) H.

Abstract

AbstractThe hydration properties of the lipid bilayer interface are important for determining membrane characteristics. The hydration properties of different lipid bilayer species were evaluated using the solvent sensitive fluorescence probe, 6-lauroyl-2-dimethylamino naphthalene (Laurdan). Sphingolipids, D-erythro-N-palmitoyl-sphingosylphosphorylcholine (PSM) and D-erythro-N-palmitoyl-dihydrosphingomyelin (DHPSM) showed specific, interfacial hydration properties stemming from their intra- and intermolecular hydrogen bonds. As control, the bilayers of glycerophospholipids, such as 1-palmitoyl-2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-oleoyl-2-oleoyl-sn-glycero-3-phosphocholine (DOPC), were also evaluated. The fluorescence properties of Laurdan in sphingolipids indicated multiple excited states according to the results obtained from the emission spectra, fluorescence anisotropy, and the center of mass spectra during the decay time. Deconvolution of the Laurdan emission spectra into four components enabled us to identify the variety of hydration and the configurational states derived from intermolecular hydrogen bonding in sphingolipids. Particularly, the Laurdan in DHPSM revealed more hydrated properties compared to the case in PSM, even though DHPSM has a higher Tm than PSM. Since DHPSM forms hydrogen bonds with water molecules (in 2NH configurational functional groups) and the different flexibility among the head groups compared with PSM, which could modulate space to retain a high amount of water molecules. The careful analysis of Laurdan such as the deconvolution of emission spectra into four components performed in this study gives the important view for understanding the membrane hydration property.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3