Otoacoustic emissions predict cochlear-nerve but not behavioral frequency tuning in an avian vocal-communication specialist

Author:

Karosas Diana M.,Gonzales Leslie,Wang Yingxuan,Bergevin Christopher,Carney Laurel H.,Henry Kenneth S.

Abstract

AbstractFrequency analysis by the cochlea forms a key foundation for all subsequent auditory processing. Stimulus-frequency otoacoustic emissions (SFOAEs) are a potentially powerful alternative to traditional behavioral experiments for estimating cochlear tuning without invasive testing, as is necessary in humans. Which methods accurately predict cochlear tuning remains controversial due to only a single animal study comparing SFOAE-based, behavioral, and cochlear frequency tuning in the same species. The budgerigar is a parakeet species with human-like behavioral sensitivity to many sounds and the capacity to mimic speech. Multiple studies show that budgerigars exhibit a perceptual “auditory fovea” with sharpest behavioral frequency tuning at mid frequencies from 3.5-4 kHz, in contrast to the typical pattern of monotonically increasing tuning sharpness for higher characteristic frequencies. We measured SFOAE-based and cochlear-afferent tuning in budgerigars, for comparison to previously reported behavioral results. SFOAE-based and cochlear-afferent tuning sharpness both increased monotonically for higher frequencies, in contrast to the behavioral pattern. Thus, SFOAE-based tuning in budgerigars accurately predicted cochlear tuning, and both measures aligned with typical patterns of cochlear frequency tuning in other species. Given divergent behavioral tuning in the budgerigars, which could reflect specializations for central processing of masked signals, these results highlight the value of SFOAEs for estimating cochlear tuning and caution against direct inference of cochlear tuning from behavioral results.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3