Gait Adaptations to Walking Speeds in Individuals with Myotonic Dystrophy Type 1

Author:

Hoerter Barthélémy,Ballaz Laurent,Cherni Yosra

Abstract

AbstractBackgroundMyotonic dystrophy type 1 (DM1) is a prevalent inherited muscular dystrophy in adults, affecting distal muscles such as the gastrocnemius, soleus, and tibialis anterior. This leads to significant gait deviations and reduced walking speed, impacting overall well-being and increasing fall risk.ObjectiveThis study aimed to assess how walking speed affects gait kinematics in individuals with DM1.MethodEighteen individuals with genetically confirmed DM1 (4 women, age: 41.0 [35.5; 47.8] years, mass: 76.8 [67.1; 94.6] kg, height: 166.0 [156.7; 173.3] cm) participated in this study. Each participant walked barefoot along a 13-meter walkway at comfortable and fast speeds. Subsequently, spatiotemporal parameters and joint kinematics were assessed.ResultsThe step length (p < 0.001), cycle speed (p < 0.001), and cadence (p < 0.001) increased significantly, leading to a higher walking speed. Moreover, the vertical amplitude of the center of mass (CoM) increased significantly (p = 0.015), while the mediolateral amplitude decreased (p = 0.001) at fast walking condition. In addition, significant kinematic changes included increased trunk tilt (p < 0.001), greater anterior pelvic tilt (p < 0.001), increased hip flexion at initial contact, and enhanced knee flexion during both stance and swing phases. Ankle dorsiflexion showed a trend towards increase during stance phase (p = 0.055) at fast walking condition.ConclusionsFast walking speed in individuals with DM1 lead to significant gait adaptations. These adaptations reflect compensatory mechanisms to manage muscle weakness. The present study revealed significant changes in spatiotemporal parameters related to walking speed. Fast walking also highlighted kinematic adaptations in trunk, pelvis and lower limb joints. These findings enhance our understanding of gait deviation in individuals with DM1 and suggest the potential benefits of targeted fast walking training in this population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3