Post-processing and weighted combination of infectious disease nowcasts

Author:

Amaral André Victor RibeiroORCID,Wolffram DanielORCID,Moraga PaulaORCID,Bracher JohannesORCID

Abstract

AbstractIn infectious diseases surveillance, incidence data are frequently subject to reporting delays and retrospective corrections, making it hard to assess current trends in real time. A variety of probabilistic nowcasting methods have been suggested to correct for the resulting biases. Building upon a recent comparison of eight of these methods in an application to COVID-19 hospitalization data from Germany, the objective of this paper is twofold. Firstly, we investigate how nowcasts from different models can be improved using statistical post-processing methods as employed, e.g., in weather forecasting. Secondly, we assess the potential of weighted ensemble nowcasts, i.e., weighted combinations of different probabilistic nowcasts. These are a natural extension of unweighted nowcast ensembles, which have previously been found to outperform most individual models. Both in post-processing and ensemble building, specific challenges arise from the fact that data are constantly revised, hindering the use of standard approaches. We find that post-processing can improve the individual performance of almost all considered models both in terms of evaluation scores and forecast interval coverage. Improving upon the performance of unweighted ensemble nowcasts via weighting schemes, on the other hand, poses a substantial challenge. Across an array of approaches, we find modest improvement in scores for some and decreased performance for most, with overall more favorable results for simple methods. In terms of forecast interval coverage, however, our methods lead to rather consistent improvements over the unweighted ensembles.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Abbott, S. , Lison, A. and Funk, S. (2021). Epinowcast: Flexible hierarchical nowcasting. https://zenodo.org/record/7924463.

2. A modelling approach for correcting reporting delays in disease surveillance data

3. Addressing delayed case reporting in infectious disease forecast modeling;PLOS Computational Biology,2022

4. Evaluating epidemic forecasts in an interval format;PLOS Computational Biology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3