Peripheral Blood Immune Cells from Individuals with Parkinson’s Disease or Inflammatory Bowel Disease Share Deficits in Iron Storage and Transport that are Modulated by Non-Steroidal Anti-Inflammatory Drugs

Author:

Bolen MacKenzie L.ORCID,Gomes Beatriz Nuñes,Gill BlakeORCID,Menees Kelly B.ORCID,Staley HannahORCID,Jernigan JannaORCID,Tansey Malú GámezORCID

Abstract

ABSTRACTParkinson’s Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80% of individuals living with PD. Interestingly, 50-70% of individuals with inflammatory bowel disease (IBD), a GI condition that has been epidemiologically linked to PD, display chronic illness-induced anemia — which drives toxic accumulation of iron in the gut. Ferroptotic (or iron loaded) cells have small and dysmorphic mitochondria—suggesting that mitochondrial dysfunction is a consequence of iron accumulation. In pro-inflammatory environments, iron accumulates in immune cells, suggesting a possible connection and/or synergy between iron dysregulation and immune cell dysfunction. Peripheral blood mononuclear cells (PBMCs) recapitulate certain PD-associated neuropathological and inflammatory signatures and can act as communicating messengers in the gut-brain axis. Additionally, this communication can be modulated by several environmental factors; specifically, our data further support existing literature demonstrating a role for non-steroidal anti-inflammatory drugs (NSAIDs) in modulating immune transcriptional states in inflamed individuals. A mechanism linking chronic gut inflammation to iron dysregulation and mitochondrial function within peripheral immune cells has yet to be identified in conferring risk for PD. To that end, we isolated PBMCs and simultaneously evaluated their directed transcriptome and bioenergetic status, to investigate if iron dysregulation and mitochondrial sensitization are linked in individuals living with PD or IBD because of chronic underlying remittent immune activation. We have identified shared features of peripheral inflammation and immunometabolism in individuals living with IBD or PD that may contribute to the epidemiological association reported between IBD and risk for PD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3